Cargando…

Using Haptic Feedback in a Virtual Reality Bone Drilling Simulation to Reduce Plunge Distance

Background Bone drilling is a procedure that demands a high level of dexterity, fine motor skills and spatial awareness from the operating surgeon. An important consideration when drilling bone is minimising soft tissue damage. There are numerous causes of drilling associated soft tissue injury, of...

Descripción completa

Detalles Bibliográficos
Autores principales: Benjamin, Miles W, Sabri, Omar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549079/
https://www.ncbi.nlm.nih.gov/pubmed/34722082
http://dx.doi.org/10.7759/cureus.18315
_version_ 1784590715326562304
author Benjamin, Miles W
Sabri, Omar
author_facet Benjamin, Miles W
Sabri, Omar
author_sort Benjamin, Miles W
collection PubMed
description Background Bone drilling is a procedure that demands a high level of dexterity, fine motor skills and spatial awareness from the operating surgeon. An important consideration when drilling bone is minimising soft tissue damage. There are numerous causes of drilling associated soft tissue injury, of which most concerning is drilling into the tissue beyond the far cortex as unseen injury can occur. This is known as plunging. Objectives The objective of this study was to evaluate the impact of haptic feedback in virtual reality (VR) simulation-based training. The acquisition of drilling skill was assessed by changes to their drill plunge depth. Study Design & Methods The participants in the study were medical students, doctors and biomedical scientists. Participants were randomly allocated into two groups. One group had simulation with haptic feedback as part of their VR simulated learning, whereas the second group undertook the same VR simulation but did not receive haptic feedback during the simulation. Following completion of the simulated bone drilling protocol, a bone drilling exercise took place. Each participant was allowed to drill a synthetic tibia bone five times and then the plunge depth was measured. We quantified outcome in the form of plunge depth. Results  There were four participants in each group. The average plunge distance in the group who were able to practice with haptic assisted VR simulation was 46mm (range: 37-56mm), the average plunge distance in the non-haptic group was 79mm (range: 44-136mm). Results showed an average reduction of 33mm in plunge depth from users in the haptic group compared to the non-haptic group. Conclusion  Bone drilling simulation with haptic feedback may be an effective simulator of the motor skills that would be required to perform this action on a live patient. The study results suggest that there could be a reduction in soft tissue damage for users trained in VR simulations with haptic feedback.
format Online
Article
Text
id pubmed-8549079
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cureus
record_format MEDLINE/PubMed
spelling pubmed-85490792021-10-29 Using Haptic Feedback in a Virtual Reality Bone Drilling Simulation to Reduce Plunge Distance Benjamin, Miles W Sabri, Omar Cureus Medical Simulation Background Bone drilling is a procedure that demands a high level of dexterity, fine motor skills and spatial awareness from the operating surgeon. An important consideration when drilling bone is minimising soft tissue damage. There are numerous causes of drilling associated soft tissue injury, of which most concerning is drilling into the tissue beyond the far cortex as unseen injury can occur. This is known as plunging. Objectives The objective of this study was to evaluate the impact of haptic feedback in virtual reality (VR) simulation-based training. The acquisition of drilling skill was assessed by changes to their drill plunge depth. Study Design & Methods The participants in the study were medical students, doctors and biomedical scientists. Participants were randomly allocated into two groups. One group had simulation with haptic feedback as part of their VR simulated learning, whereas the second group undertook the same VR simulation but did not receive haptic feedback during the simulation. Following completion of the simulated bone drilling protocol, a bone drilling exercise took place. Each participant was allowed to drill a synthetic tibia bone five times and then the plunge depth was measured. We quantified outcome in the form of plunge depth. Results  There were four participants in each group. The average plunge distance in the group who were able to practice with haptic assisted VR simulation was 46mm (range: 37-56mm), the average plunge distance in the non-haptic group was 79mm (range: 44-136mm). Results showed an average reduction of 33mm in plunge depth from users in the haptic group compared to the non-haptic group. Conclusion  Bone drilling simulation with haptic feedback may be an effective simulator of the motor skills that would be required to perform this action on a live patient. The study results suggest that there could be a reduction in soft tissue damage for users trained in VR simulations with haptic feedback. Cureus 2021-09-27 /pmc/articles/PMC8549079/ /pubmed/34722082 http://dx.doi.org/10.7759/cureus.18315 Text en Copyright © 2021, Benjamin et al. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Medical Simulation
Benjamin, Miles W
Sabri, Omar
Using Haptic Feedback in a Virtual Reality Bone Drilling Simulation to Reduce Plunge Distance
title Using Haptic Feedback in a Virtual Reality Bone Drilling Simulation to Reduce Plunge Distance
title_full Using Haptic Feedback in a Virtual Reality Bone Drilling Simulation to Reduce Plunge Distance
title_fullStr Using Haptic Feedback in a Virtual Reality Bone Drilling Simulation to Reduce Plunge Distance
title_full_unstemmed Using Haptic Feedback in a Virtual Reality Bone Drilling Simulation to Reduce Plunge Distance
title_short Using Haptic Feedback in a Virtual Reality Bone Drilling Simulation to Reduce Plunge Distance
title_sort using haptic feedback in a virtual reality bone drilling simulation to reduce plunge distance
topic Medical Simulation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549079/
https://www.ncbi.nlm.nih.gov/pubmed/34722082
http://dx.doi.org/10.7759/cureus.18315
work_keys_str_mv AT benjaminmilesw usinghapticfeedbackinavirtualrealitybonedrillingsimulationtoreduceplungedistance
AT sabriomar usinghapticfeedbackinavirtualrealitybonedrillingsimulationtoreduceplungedistance