Cargando…
Machine learning with asymmetric abstention for biomedical decision-making
Machine learning and artificial intelligence have entered biomedical decision-making for diagnostics, prognostics, or therapy recommendations. However, these methods need to be interpreted with care because of the severe consequences for patients. In contrast to human decision-making, computational...
Autores principales: | Gandouz, Mariem, Holzmann, Hajo, Heider, Dominik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549182/ https://www.ncbi.nlm.nih.gov/pubmed/34702225 http://dx.doi.org/10.1186/s12911-021-01655-y |
Ejemplares similares
-
The Sound of Silence: Minorities, Abstention and Democracy
por: Biondo, Alessio Emanuele, et al.
Publicado: (2021) -
Alcohol Consumption and Abstention among Pregnant Japanese Women
por: Yamamoto, Yuko, et al.
Publicado: (2008) -
Cooperation in the spatial prisoner’s dilemma game with probabilistic abstention
por: Cardinot, Marcos, et al.
Publicado: (2018) -
Asymmetric quantum decision-making
por: Shiratori, Honoka, et al.
Publicado: (2023) -
Are Lifetime Abstainers the Best Control Group in Alcohol Epidemiology? On the Stability and Validity of Reported Lifetime Abstention
por: Rehm, J., et al.
Publicado: (2008)