Cargando…
A Markov random field model for network-based differential expression analysis of single-cell RNA-seq data
BACKGROUND: Recent development of single cell sequencing technologies has made it possible to identify genes with different expression (DE) levels at the cell type level between different groups of samples. In this article, we propose to borrow information through known biological networks to increa...
Autores principales: | Li, Hongyu, Zhu, Biqing, Xu, Zhichao, Adams, Taylor, Kaminski, Naftali, Zhao, Hongyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549347/ https://www.ncbi.nlm.nih.gov/pubmed/34702190 http://dx.doi.org/10.1186/s12859-021-04412-0 |
Ejemplares similares
-
A Markov random field model-based approach for differentially expressed gene detection from single-cell RNA-seq data
por: Zhu, Biqing, et al.
Publicado: (2022) -
Cell Heterogeneity Analysis in Single-Cell RNA-seq Data Using Mixture Exponential Graph and Markov Random Field Model
por: Wang, Yishu, et al.
Publicado: (2021) -
An Order Reduction Design Framework for Higher-Order Binary Markov Random Fields
por: Chen, Zhuo, et al.
Publicado: (2023) -
Differential expression analysis for paired RNA-seq data
por: Chung, Lisa M, et al.
Publicado: (2013) -
Non-linear archetypal analysis of single-cell RNA-seq data by deep autoencoders
por: Wang, Yuge, et al.
Publicado: (2022)