Cargando…
Machine Learning-Based Electroencephalographic Phenotypes of Schizophrenia and Major Depressive Disorder
Background: Psychiatric diagnosis is formulated by symptomatic classification; disease-specific neurophysiological phenotyping could help with its fundamental treatment. Here, we investigated brain phenotyping in patients with schizophrenia (SZ) and major depressive disorder (MDD) by using electroen...
Autores principales: | Jang, Kuk-In, Kim, Sungkean, Kim, Soo Young, Lee, Chany, Chae, Jeong-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549692/ https://www.ncbi.nlm.nih.gov/pubmed/34721112 http://dx.doi.org/10.3389/fpsyt.2021.745458 |
Ejemplares similares
-
Association between the loudness dependence of auditory evoked
potentials and age in patients with schizophrenia and depression
por: Jang, Kuk-In, et al.
Publicado: (2022) -
Altered Cortical Functional Networks in Patients With Schizophrenia and Bipolar Disorder: A Resting-State Electroencephalographic Study
por: Kim, Sungkean, et al.
Publicado: (2020) -
Comparison of frontal alpha asymmetry among schizophrenia patients, major depressive disorder patients, and healthy controls
por: Jang, Kuk-In, et al.
Publicado: (2020) -
Electroencephalographic Microstates in Schizophrenia and Bipolar Disorder
por: Wang, Fanglan, et al.
Publicado: (2021) -
Abnormalities in Electroencephalographic Microstates Among Adolescents With First Episode Major Depressive Disorder
por: He, Yuqiong, et al.
Publicado: (2021)