Cargando…
On Rigid Minimal Spaces
A compact space X is said to be minimal if there exists a map [Formula: see text] such that the forward orbit of any point is dense in X. We consider rigid minimal spaces, motivated by recent results of Downarowicz, Snoha and Tywoniuk (J Dyn Differ Equ, 29:243–257, 2017) on spaces with cyclic group...
Autores principales: | Boroński, Jan P., Činč, Jernej, Foryś-Krawiec, Magdalena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549925/ https://www.ncbi.nlm.nih.gov/pubmed/34720546 http://dx.doi.org/10.1007/s10884-020-09845-4 |
Ejemplares similares
-
An Upper Bound on Topological Entropy of the Bunimovich Stadium Billiard Map
por: Činč, Jernej, et al.
Publicado: (2023) -
Parametrized family of pseudo‐arc attractors: Physical measures and prime end rotations
por: Činč, Jernej, et al.
Publicado: (2022) -
Perception of rigidity in three- and four-dimensional spaces
por: He, Dongcheng, et al.
Publicado: (2023) -
In Vitro Disease Models of the Endocrine Pancreas
por: Milojević, Marko, et al.
Publicado: (2021) -
Strong rigidity of locally symmetric spaces (AM-78)
por: Mostow, G Daniel
Publicado: (1974)