Cargando…

Filters and congruences in sectionally pseudocomplemented lattices and posets

Together with J. Paseka we introduced so-called sectionally pseudocomplemented lattices and posets and illuminated their role in algebraic constructions. We believe that—similar to relatively pseudocomplemented lattices—these structures can serve as an algebraic semantics of certain intuitionistic l...

Descripción completa

Detalles Bibliográficos
Autores principales: Chajda, Ivan, Länger, Helmut
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549928/
https://www.ncbi.nlm.nih.gov/pubmed/34720703
http://dx.doi.org/10.1007/s00500-021-05900-4
Descripción
Sumario:Together with J. Paseka we introduced so-called sectionally pseudocomplemented lattices and posets and illuminated their role in algebraic constructions. We believe that—similar to relatively pseudocomplemented lattices—these structures can serve as an algebraic semantics of certain intuitionistic logics. The aim of the present paper is to define congruences and filters in these structures, derive mutual relationships between them and describe basic properties of congruences in strongly sectionally pseudocomplemented posets. For the description of filters in both sectionally pseudocomplemented lattices and posets, we use the tools introduced by A. Ursini, i.e., ideal terms and the closedness with respect to them. It seems to be of some interest that a similar machinery can be applied also for strongly sectionally pseudocomplemented posets in spite of the fact that the corresponding ideal terms are not everywhere defined.