Cargando…
Analysis-Specific Fast Simulation at the LHC with Deep Learning
We present a fast-simulation application based on a deep neural network, designed to create large analysis-specific datasets. Taking as an example the generation of W + jet events produced in [Formula: see text] 13 TeV proton–proton collisions, we train a neural network to model detector resolution...
Autores principales: | Chen, C., Cerri, O., Nguyen, T. Q., Vlimant, J. R., Pierini, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549944/ https://www.ncbi.nlm.nih.gov/pubmed/34723083 http://dx.doi.org/10.1007/s41781-021-00060-4 |
Ejemplares similares
-
Analysis-Specific Fast Simulation at the LHC with Deep Learning
por: Chen, C, et al.
Publicado: (2021) -
Data Augmentation at the LHC through Analysis-specific Fast Simulation with Deep Learning
por: Chen, Cheng, et al.
Publicado: (2020) -
Topology classification with deep learning to improve real-time event selection at the LHC
por: Nguyen, Thong Q., et al.
Publicado: (2018) -
Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders
por: Touranakou, Mary, et al.
Publicado: (2022) -
Generative Adversarial Networks for fast simulation
por: Carminati, Federico, et al.
Publicado: (2020)