Cargando…
Small data global regularity for half-wave maps in n = 4 dimensions
We prove that the half-wave maps problem on [Image: see text] with target S(2) is globally well-posed for smooth initial data which are small in the critical l(1) based Besov space. This is a formal analogue of the result proved by Tataru for wave maps.
Autores principales: | Kiesenhofer, Anna, Krieger, Joachim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549970/ https://www.ncbi.nlm.nih.gov/pubmed/34720359 http://dx.doi.org/10.1080/03605302.2021.1936021 |
Ejemplares similares
-
Stability of spherically symmetric wave maps
por: Krieger, Joachim
Publicado: (2006) -
D4 - Half Wave Resonators developments
por: Facco, A, et al.
Publicado: (08/1) -
Global regularity for 2D water waves with surface tension
por: Ionescu, Alexandru D, et al.
Publicado: (2019) -
Performing Sparse Regularization and Dimension Reduction Simultaneously in Multimodal Data Fusion
por: Yang, Zhengshi, et al.
Publicado: (2019) -
Regularization dependence in extra dimensions and effective theory of strings in extra dimension
por: Kubo, J
Publicado: (2000)