Cargando…
Stieltjes constants of L-functions in the extended Selberg class
Let f be an arithmetic function and let [Formula: see text] denote the extended Selberg class. We denote by [Formula: see text] the Dirichlet series attached to f. The Laurent–Stieltjes constants of [Formula: see text] , which belongs to [Formula: see text] , are the coefficients of the Laurent expa...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549975/ https://www.ncbi.nlm.nih.gov/pubmed/34720671 http://dx.doi.org/10.1007/s11139-021-00391-1 |
Sumario: | Let f be an arithmetic function and let [Formula: see text] denote the extended Selberg class. We denote by [Formula: see text] the Dirichlet series attached to f. The Laurent–Stieltjes constants of [Formula: see text] , which belongs to [Formula: see text] , are the coefficients of the Laurent expansion of [Formula: see text] at its pole [Formula: see text] . In this paper, we give an upper bound of these constants, which is a generalization of many known results. |
---|