Cargando…

Stieltjes constants of L-functions in the extended Selberg class

Let f be an arithmetic function and let [Formula: see text] denote the extended Selberg class. We denote by [Formula: see text] the Dirichlet series attached to f. The Laurent–Stieltjes constants of [Formula: see text] , which belongs to [Formula: see text] , are the coefficients of the Laurent expa...

Descripción completa

Detalles Bibliográficos
Autores principales: Inoue, Shōta, Eddin, Sumaia Saad, Suriajaya, Ade Irma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549975/
https://www.ncbi.nlm.nih.gov/pubmed/34720671
http://dx.doi.org/10.1007/s11139-021-00391-1
_version_ 1784590865999593472
author Inoue, Shōta
Eddin, Sumaia Saad
Suriajaya, Ade Irma
author_facet Inoue, Shōta
Eddin, Sumaia Saad
Suriajaya, Ade Irma
author_sort Inoue, Shōta
collection PubMed
description Let f be an arithmetic function and let [Formula: see text] denote the extended Selberg class. We denote by [Formula: see text] the Dirichlet series attached to f. The Laurent–Stieltjes constants of [Formula: see text] , which belongs to [Formula: see text] , are the coefficients of the Laurent expansion of [Formula: see text] at its pole [Formula: see text] . In this paper, we give an upper bound of these constants, which is a generalization of many known results.
format Online
Article
Text
id pubmed-8549975
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-85499752021-10-29 Stieltjes constants of L-functions in the extended Selberg class Inoue, Shōta Eddin, Sumaia Saad Suriajaya, Ade Irma Ramanujan J Article Let f be an arithmetic function and let [Formula: see text] denote the extended Selberg class. We denote by [Formula: see text] the Dirichlet series attached to f. The Laurent–Stieltjes constants of [Formula: see text] , which belongs to [Formula: see text] , are the coefficients of the Laurent expansion of [Formula: see text] at its pole [Formula: see text] . In this paper, we give an upper bound of these constants, which is a generalization of many known results. Springer US 2021-03-20 2021 /pmc/articles/PMC8549975/ /pubmed/34720671 http://dx.doi.org/10.1007/s11139-021-00391-1 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Inoue, Shōta
Eddin, Sumaia Saad
Suriajaya, Ade Irma
Stieltjes constants of L-functions in the extended Selberg class
title Stieltjes constants of L-functions in the extended Selberg class
title_full Stieltjes constants of L-functions in the extended Selberg class
title_fullStr Stieltjes constants of L-functions in the extended Selberg class
title_full_unstemmed Stieltjes constants of L-functions in the extended Selberg class
title_short Stieltjes constants of L-functions in the extended Selberg class
title_sort stieltjes constants of l-functions in the extended selberg class
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549975/
https://www.ncbi.nlm.nih.gov/pubmed/34720671
http://dx.doi.org/10.1007/s11139-021-00391-1
work_keys_str_mv AT inoueshota stieltjesconstantsoflfunctionsintheextendedselbergclass
AT eddinsumaiasaad stieltjesconstantsoflfunctionsintheextendedselbergclass
AT suriajayaadeirma stieltjesconstantsoflfunctionsintheextendedselbergclass