Cargando…
Discrete curvature and torsion from cross-ratios
Motivated by a Möbius invariant subdivision scheme for polygons, we study a curvature notion for discrete curves where the cross-ratio plays an important role in all our key definitions. Using a particular Möbius invariant point-insertion-rule, comparable to the classical four-point-scheme, we const...
Autores principales: | Müller, Christian, Vaxman, Amir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549994/ https://www.ncbi.nlm.nih.gov/pubmed/34720360 http://dx.doi.org/10.1007/s10231-021-01065-x |
Ejemplares similares
-
Abnormalities of Penile Curvature: Chordee and Penile Torsion
por: Montag, Sylvia, et al.
Publicado: (2011) -
Modern approaches to discrete curvature
por: Najman, Laurent, et al.
Publicado: (2017) -
Total torsion of three-dimensional lines of curvature
por: Raffaelli, Matteo
Publicado: (2023) -
ADE string vacua with discrete torsion
por: Kreuzer, Maximilian, et al.
Publicado: (1993) -
Discrete Constant Mean Curvature Surfaces and their Index
por: Polthier, K, et al.
Publicado: (2000)