Cargando…
Non Uniqueness of Power-Law Flows
We apply the technique of convex integration to obtain non-uniqueness and existence results for power-law fluids, in dimension [Formula: see text] . For the power index q below the compactness threshold, i.e. [Formula: see text] , we show ill-posedness of Leray–Hopf solutions. For a wider class of i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550025/ https://www.ncbi.nlm.nih.gov/pubmed/34720129 http://dx.doi.org/10.1007/s00220-021-04231-7 |
Sumario: | We apply the technique of convex integration to obtain non-uniqueness and existence results for power-law fluids, in dimension [Formula: see text] . For the power index q below the compactness threshold, i.e. [Formula: see text] , we show ill-posedness of Leray–Hopf solutions. For a wider class of indices [Formula: see text] we show ill-posedness of distributional (non-Leray–Hopf) solutions, extending the seminal paper of Buckmaster & Vicol [10]. In this wider class we also construct non-unique solutions for every datum in [Formula: see text] . |
---|