Cargando…
Non Uniqueness of Power-Law Flows
We apply the technique of convex integration to obtain non-uniqueness and existence results for power-law fluids, in dimension [Formula: see text] . For the power index q below the compactness threshold, i.e. [Formula: see text] , we show ill-posedness of Leray–Hopf solutions. For a wider class of i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550025/ https://www.ncbi.nlm.nih.gov/pubmed/34720129 http://dx.doi.org/10.1007/s00220-021-04231-7 |
_version_ | 1784590876353232896 |
---|---|
author | Burczak, Jan Modena, Stefano Székelyhidi, László |
author_facet | Burczak, Jan Modena, Stefano Székelyhidi, László |
author_sort | Burczak, Jan |
collection | PubMed |
description | We apply the technique of convex integration to obtain non-uniqueness and existence results for power-law fluids, in dimension [Formula: see text] . For the power index q below the compactness threshold, i.e. [Formula: see text] , we show ill-posedness of Leray–Hopf solutions. For a wider class of indices [Formula: see text] we show ill-posedness of distributional (non-Leray–Hopf) solutions, extending the seminal paper of Buckmaster & Vicol [10]. In this wider class we also construct non-unique solutions for every datum in [Formula: see text] . |
format | Online Article Text |
id | pubmed-8550025 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-85500252021-10-29 Non Uniqueness of Power-Law Flows Burczak, Jan Modena, Stefano Székelyhidi, László Commun Math Phys Article We apply the technique of convex integration to obtain non-uniqueness and existence results for power-law fluids, in dimension [Formula: see text] . For the power index q below the compactness threshold, i.e. [Formula: see text] , we show ill-posedness of Leray–Hopf solutions. For a wider class of indices [Formula: see text] we show ill-posedness of distributional (non-Leray–Hopf) solutions, extending the seminal paper of Buckmaster & Vicol [10]. In this wider class we also construct non-unique solutions for every datum in [Formula: see text] . Springer Berlin Heidelberg 2021-10-06 2021 /pmc/articles/PMC8550025/ /pubmed/34720129 http://dx.doi.org/10.1007/s00220-021-04231-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Burczak, Jan Modena, Stefano Székelyhidi, László Non Uniqueness of Power-Law Flows |
title | Non Uniqueness of Power-Law Flows |
title_full | Non Uniqueness of Power-Law Flows |
title_fullStr | Non Uniqueness of Power-Law Flows |
title_full_unstemmed | Non Uniqueness of Power-Law Flows |
title_short | Non Uniqueness of Power-Law Flows |
title_sort | non uniqueness of power-law flows |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550025/ https://www.ncbi.nlm.nih.gov/pubmed/34720129 http://dx.doi.org/10.1007/s00220-021-04231-7 |
work_keys_str_mv | AT burczakjan nonuniquenessofpowerlawflows AT modenastefano nonuniquenessofpowerlawflows AT szekelyhidilaszlo nonuniquenessofpowerlawflows |