Cargando…
Non Uniqueness of Power-Law Flows
We apply the technique of convex integration to obtain non-uniqueness and existence results for power-law fluids, in dimension [Formula: see text] . For the power index q below the compactness threshold, i.e. [Formula: see text] , we show ill-posedness of Leray–Hopf solutions. For a wider class of i...
Autores principales: | Burczak, Jan, Modena, Stefano, Székelyhidi, László |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550025/ https://www.ncbi.nlm.nih.gov/pubmed/34720129 http://dx.doi.org/10.1007/s00220-021-04231-7 |
Ejemplares similares
-
Non-uniqueness for the Transport Equation with Sobolev Vector Fields
por: Modena, Stefano, et al.
Publicado: (2018) -
Discrete spectral synthesis and its applications
por: Székelyhidi, László
Publicado: (2007) -
Dynamic Electroosmotic Flows of Power-Law Fluids in Rectangular Microchannels
por: Zhao, Cunlu, et al.
Publicado: (2017) -
Deformation of a Capsule in a Power-Law Shear Flow
por: Tian, Fang-Bao
Publicado: (2016) -
Non-Fourier energy transmission in power-law hybrid nanofluid flow over a moving sheet
por: Alhowaity, Awatif, et al.
Publicado: (2022)