Cargando…

A redescription of the Late Jurassic (Tithonian) turtle Uluops uluops and a new phylogenetic hypothesis of Paracryptodira

We study the Late Jurassic (Tithonian) turtle Uluops uluops using micro-computed tomography scans to investigate the cranial anatomy of paracryptodires, and provide new insights into the evolution of the internal carotid artery and facial nerve systems, as well as the phylogenetic relationships of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Rollot, Yann, Evers, Serjoscha W., Joyce, Walter G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550081/
https://www.ncbi.nlm.nih.gov/pubmed/34721284
http://dx.doi.org/10.1186/s13358-021-00234-y
Descripción
Sumario:We study the Late Jurassic (Tithonian) turtle Uluops uluops using micro-computed tomography scans to investigate the cranial anatomy of paracryptodires, and provide new insights into the evolution of the internal carotid artery and facial nerve systems, as well as the phylogenetic relationships of this group. We demonstrate the presence of a canalis caroticus lateralis in Uluops uluops, the only pleurosternid for which a palatine artery canal can be confidently identified. Our phylogenetic analysis retrieves Uluops uluops as the earliest branching pleurosternid, Helochelydridae within Pleurosternidae, and Compsemydidae including Kallokibotion bajazidi within Baenidae, which suggests at least two independent losses of the palatine artery within paracryptodires. We expect future studies will provide additional insights into the evolution of the circulation system of paracryptodires, as well as clarifying relationships along the turtle stem. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13358-021-00234-y.