Cargando…
Gradual transitivity in orthogonality spaces of finite rank
An orthogonality space is a set together with a symmetric and irreflexive binary relation. Any linear space equipped with a reflexive and anisotropic inner product provides an example: the set of one-dimensional subspaces together with the usual orthogonality relation is an orthogonality space. We p...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550102/ https://www.ncbi.nlm.nih.gov/pubmed/34720110 http://dx.doi.org/10.1007/s00010-020-00756-9 |
Sumario: | An orthogonality space is a set together with a symmetric and irreflexive binary relation. Any linear space equipped with a reflexive and anisotropic inner product provides an example: the set of one-dimensional subspaces together with the usual orthogonality relation is an orthogonality space. We present simple conditions to characterise the orthogonality spaces that arise in this way from finite-dimensional Hermitian spaces. Moreover, we investigate the consequences of the hypothesis that an orthogonality space allows gradual transitions between any pair of its elements. More precisely, given elements e and f, we require a homomorphism from a divisible subgroup of the circle group to the automorphism group of the orthogonality space to exist such that one of the automorphisms maps e to f, and any of the automorphisms leaves the elements orthogonal to e and f fixed. We show that our hypothesis leads us to positive definite quadratic spaces. By adding a certain simplicity condition, we furthermore find that the field of scalars is Archimedean and hence a subfield of the reals. |
---|