Cargando…
Blind Source Separation for Compositional Time Series
Many geological phenomena are regularly measured over time to follow developments and changes. For many of these phenomena, the absolute values are not of interest, but rather the relative information, which means that the data are compositional time series. Thus, the serial nature and the compositi...
Autores principales: | Nordhausen, Klaus, Fischer, Gregor, Filzmoser, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550155/ https://www.ncbi.nlm.nih.gov/pubmed/34721726 http://dx.doi.org/10.1007/s11004-020-09869-y |
Ejemplares similares
-
Visual Parameter Selection for Spatial Blind Source Separation
por: Piccolotto, N., et al.
Publicado: (2022) -
Tensorial blind source separation for improved analysis of multi-omic data
por: Teschendorff, Andrew E., et al.
Publicado: (2018) -
Blind recovery of sources for multivariate space-time random fields
por: Muehlmann, C., et al.
Publicado: (2022) -
A review of second‐order blind identification methods
por: Pan, Yan, et al.
Publicado: (2021) -
Blind source separation: dependent component analysis
por: Xiang, Yong, et al.
Publicado: (2015)