Cargando…
Learning Extremal Representations with Deep Archetypal Analysis
Archetypes represent extreme manifestations of a population with respect to specific characteristic traits or features. In linear feature space, archetypes approximate the data convex hull allowing all data points to be expressed as convex mixtures of archetypes. As mixing of archetypes is performed...
Autores principales: | Keller, Sebastian Mathias, Samarin, Maxim, Arend Torres, Fabricio, Wieser, Mario, Roth, Volker |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550171/ https://www.ncbi.nlm.nih.gov/pubmed/34720403 http://dx.doi.org/10.1007/s11263-020-01390-3 |
Ejemplares similares
-
Convex Representations Using Deep Archetypal Analysis for Predicting Glaucoma
Publicado: (2020) -
Archetypal Analysis for population genetics
por: Gimbernat-Mayol, Julia, et al.
Publicado: (2022) -
Describing Dataset Archetypes
por: Dodds, Leigh
Publicado: (2020) -
Critical care archetypes
por: Cameron, Paul A., et al.
Publicado: (2021) -
Applying representational state transfer (REST) architecture to archetype-based electronic health record systems
por: Sundvall, Erik, et al.
Publicado: (2013)