Cargando…
Changing summer precipitation variability in the Alpine region: on the role of scale dependent atmospheric drivers
Summer precipitation totals in the Alpine Region do not exhibit a systematic trend over the last 120 years. However, we find significant low frequency periodicity of interannual variability which occurs in synchronization with a dominant two-phase state of the atmospheric circulation over the Alps....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550189/ https://www.ncbi.nlm.nih.gov/pubmed/34720434 http://dx.doi.org/10.1007/s00382-021-05753-5 |
Sumario: | Summer precipitation totals in the Alpine Region do not exhibit a systematic trend over the last 120 years. However, we find significant low frequency periodicity of interannual variability which occurs in synchronization with a dominant two-phase state of the atmospheric circulation over the Alps. Enhanced meridional flow increases precipitation variability through positive soil moisture precipitation feedbacks on the regional scale, whereas enhanced zonal flow results in less variability through constant moisture flow from the Atlantic and suppressed feedbacks with the land surface. The dominant state of the atmospheric circulation over the Alps in these periods appears to be steered by zonal sea surface temperature gradients in the mid-latitude North Atlantic. The strength and the location of the westerlies in the mid-latitude Atlantic play an important role in the physical mechanisms linking atmosphere and oceanic temperature gradients and the meridional/zonal circulation characteristics. |
---|