Cargando…
Playing Atari with few neurons: Improving the efficacy of reinforcement learning by decoupling feature extraction and decision making
We propose a new method for learning compact state representations and policies separately but simultaneously for policy approximation in vision-based applications such as Atari games. Approaches based on deep reinforcement learning typically map pixels directly to actions to enable end-to-end train...
Autores principales: | Cuccu, Giuseppe, Togelius, Julian, Cudré-Mauroux, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550197/ https://www.ncbi.nlm.nih.gov/pubmed/34720684 http://dx.doi.org/10.1007/s10458-021-09497-8 |
Ejemplares similares
-
Emergent Semantics: Interoperability in Large-Scale Decentralized Information Systems
por: Cudré-Mauroux, Philippe
Publicado: (2008) -
Benchmarking Perturbation-Based Saliency Maps for Explaining Atari Agents
por: Huber, Tobias, et al.
Publicado: (2022) -
A low-latency, big database system and browser for storage, querying and visualization of 3D genomic data
por: Butyaev, Alexander, et al.
Publicado: (2015) -
ATARiS: Computational quantification of gene suppression phenotypes from multisample RNAi screens
por: Shao, Diane D., et al.
Publicado: (2013) -
Study to Address Threats of Acute Respiratory Infections among Congregate Military Populations (ATARI)
por: Coles, Christian, et al.
Publicado: (2017)