Cargando…
Six shades lighter: a bit-serial implementation of the AES family
Recently, cryptographic literature has seen new block cipher designs such as PRESENT, GIFT or SKINNY that aim to be more lightweight than the current standard, i.e., AES. Even though AES family of block ciphers were designed two decades ago, they still remain as the de facto encryption standard, wit...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550219/ https://www.ncbi.nlm.nih.gov/pubmed/34722104 http://dx.doi.org/10.1007/s13389-021-00265-8 |
Sumario: | Recently, cryptographic literature has seen new block cipher designs such as PRESENT, GIFT or SKINNY that aim to be more lightweight than the current standard, i.e., AES. Even though AES family of block ciphers were designed two decades ago, they still remain as the de facto encryption standard, with AES-128 being the most widely deployed variant. In this work, we revisit the combined one-in-all implementation of the AES family, namely both encryption and decryption of each AES-128/192/256 as a single ASIC circuit. A preliminary version appeared in Africacrypt 2019 by Balli and Banik, where the authors design a byte-serial circuit with such functionality. We improve on their work by reducing the size of the compact circuit to 2268 GE through 1-bit-serial implementation, which achieves 38% reduction in area. We also report stand-alone bit-serial versions of the circuit, targeting only a subset of modes and versions, e.g., AES-192 and AES-256. Our results imply that, in terms of area, AES-192 and AES-256 can easily compete with the larger members of recently designed SKINNY family, e.g., SKINNY-128-256, SKINNY-128-384. Thus, our implementations can be used interchangeably inside authenticated encryption candidates such as SKINNY-AEAD/-HASH, ForkAE or Romulus in place of SKINNY. |
---|