Cargando…

Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle

Muscle contraction depends on tightly regulated Ca(2+) release. Aberrant Ca(2+) leak through ryanodine receptor 1 (RyR1) on the sarcoplasmic reticulum (SR) membrane can lead to heatstroke and malignant hyperthermia (MH) susceptibility, as well as severe myopathy. However, the mechanism by which Ca(2...

Descripción completa

Detalles Bibliográficos
Autores principales: Lamboley, Cedric R., Pearce, Luke, Seng, Crystal, Meizoso-Huesca, Aldo, Singh, Daniel P., Frankish, Barnaby P., Kaura, Vikas, Lo, Harriet P., Ferguson, Charles, Allen, Paul D., Hopkins, Philip M., Parton, Robert G., Murphy, Robyn M., van der Poel, Chris, Barclay, Christopher J., Launikonis, Bradley S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550231/
https://www.ncbi.nlm.nih.gov/pubmed/34705503
http://dx.doi.org/10.1126/sciadv.abi7166
_version_ 1784590916039737344
author Lamboley, Cedric R.
Pearce, Luke
Seng, Crystal
Meizoso-Huesca, Aldo
Singh, Daniel P.
Frankish, Barnaby P.
Kaura, Vikas
Lo, Harriet P.
Ferguson, Charles
Allen, Paul D.
Hopkins, Philip M.
Parton, Robert G.
Murphy, Robyn M.
van der Poel, Chris
Barclay, Christopher J.
Launikonis, Bradley S.
author_facet Lamboley, Cedric R.
Pearce, Luke
Seng, Crystal
Meizoso-Huesca, Aldo
Singh, Daniel P.
Frankish, Barnaby P.
Kaura, Vikas
Lo, Harriet P.
Ferguson, Charles
Allen, Paul D.
Hopkins, Philip M.
Parton, Robert G.
Murphy, Robyn M.
van der Poel, Chris
Barclay, Christopher J.
Launikonis, Bradley S.
author_sort Lamboley, Cedric R.
collection PubMed
description Muscle contraction depends on tightly regulated Ca(2+) release. Aberrant Ca(2+) leak through ryanodine receptor 1 (RyR1) on the sarcoplasmic reticulum (SR) membrane can lead to heatstroke and malignant hyperthermia (MH) susceptibility, as well as severe myopathy. However, the mechanism by which Ca(2+) leak drives these pathologies is unknown. Here, we investigate the effects of four mouse genotypes with increasingly severe RyR1 leak in skeletal muscle fibers. We find that RyR1 Ca(2+) leak initiates a cascade of events that cause precise redistribution of Ca(2+) among the SR, cytoplasm, and mitochondria through altering the Ca(2+) permeability of the transverse tubular system membrane. This redistribution of Ca(2+) allows mice with moderate RyR1 leak to maintain normal function; however, severe RyR1 leak with RYR1 mutations reduces the capacity to generate force. Our results reveal the mechanism underlying force preservation, increased ATP metabolism, and susceptibility to MH in individuals with gain-of-function RYR1 mutations.
format Online
Article
Text
id pubmed-8550231
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-85502312021-11-05 Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle Lamboley, Cedric R. Pearce, Luke Seng, Crystal Meizoso-Huesca, Aldo Singh, Daniel P. Frankish, Barnaby P. Kaura, Vikas Lo, Harriet P. Ferguson, Charles Allen, Paul D. Hopkins, Philip M. Parton, Robert G. Murphy, Robyn M. van der Poel, Chris Barclay, Christopher J. Launikonis, Bradley S. Sci Adv Biomedicine and Life Sciences Muscle contraction depends on tightly regulated Ca(2+) release. Aberrant Ca(2+) leak through ryanodine receptor 1 (RyR1) on the sarcoplasmic reticulum (SR) membrane can lead to heatstroke and malignant hyperthermia (MH) susceptibility, as well as severe myopathy. However, the mechanism by which Ca(2+) leak drives these pathologies is unknown. Here, we investigate the effects of four mouse genotypes with increasingly severe RyR1 leak in skeletal muscle fibers. We find that RyR1 Ca(2+) leak initiates a cascade of events that cause precise redistribution of Ca(2+) among the SR, cytoplasm, and mitochondria through altering the Ca(2+) permeability of the transverse tubular system membrane. This redistribution of Ca(2+) allows mice with moderate RyR1 leak to maintain normal function; however, severe RyR1 leak with RYR1 mutations reduces the capacity to generate force. Our results reveal the mechanism underlying force preservation, increased ATP metabolism, and susceptibility to MH in individuals with gain-of-function RYR1 mutations. American Association for the Advancement of Science 2021-10-27 /pmc/articles/PMC8550231/ /pubmed/34705503 http://dx.doi.org/10.1126/sciadv.abi7166 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Lamboley, Cedric R.
Pearce, Luke
Seng, Crystal
Meizoso-Huesca, Aldo
Singh, Daniel P.
Frankish, Barnaby P.
Kaura, Vikas
Lo, Harriet P.
Ferguson, Charles
Allen, Paul D.
Hopkins, Philip M.
Parton, Robert G.
Murphy, Robyn M.
van der Poel, Chris
Barclay, Christopher J.
Launikonis, Bradley S.
Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle
title Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle
title_full Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle
title_fullStr Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle
title_full_unstemmed Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle
title_short Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle
title_sort ryanodine receptor leak triggers fiber ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550231/
https://www.ncbi.nlm.nih.gov/pubmed/34705503
http://dx.doi.org/10.1126/sciadv.abi7166
work_keys_str_mv AT lamboleycedricr ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle
AT pearceluke ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle
AT sengcrystal ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle
AT meizosohuescaaldo ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle
AT singhdanielp ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle
AT frankishbarnabyp ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle
AT kauravikas ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle
AT loharrietp ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle
AT fergusoncharles ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle
AT allenpauld ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle
AT hopkinsphilipm ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle
AT partonrobertg ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle
AT murphyrobynm ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle
AT vanderpoelchris ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle
AT barclaychristopherj ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle
AT launikonisbradleys ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle