Cargando…
Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle
Muscle contraction depends on tightly regulated Ca(2+) release. Aberrant Ca(2+) leak through ryanodine receptor 1 (RyR1) on the sarcoplasmic reticulum (SR) membrane can lead to heatstroke and malignant hyperthermia (MH) susceptibility, as well as severe myopathy. However, the mechanism by which Ca(2...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550231/ https://www.ncbi.nlm.nih.gov/pubmed/34705503 http://dx.doi.org/10.1126/sciadv.abi7166 |
_version_ | 1784590916039737344 |
---|---|
author | Lamboley, Cedric R. Pearce, Luke Seng, Crystal Meizoso-Huesca, Aldo Singh, Daniel P. Frankish, Barnaby P. Kaura, Vikas Lo, Harriet P. Ferguson, Charles Allen, Paul D. Hopkins, Philip M. Parton, Robert G. Murphy, Robyn M. van der Poel, Chris Barclay, Christopher J. Launikonis, Bradley S. |
author_facet | Lamboley, Cedric R. Pearce, Luke Seng, Crystal Meizoso-Huesca, Aldo Singh, Daniel P. Frankish, Barnaby P. Kaura, Vikas Lo, Harriet P. Ferguson, Charles Allen, Paul D. Hopkins, Philip M. Parton, Robert G. Murphy, Robyn M. van der Poel, Chris Barclay, Christopher J. Launikonis, Bradley S. |
author_sort | Lamboley, Cedric R. |
collection | PubMed |
description | Muscle contraction depends on tightly regulated Ca(2+) release. Aberrant Ca(2+) leak through ryanodine receptor 1 (RyR1) on the sarcoplasmic reticulum (SR) membrane can lead to heatstroke and malignant hyperthermia (MH) susceptibility, as well as severe myopathy. However, the mechanism by which Ca(2+) leak drives these pathologies is unknown. Here, we investigate the effects of four mouse genotypes with increasingly severe RyR1 leak in skeletal muscle fibers. We find that RyR1 Ca(2+) leak initiates a cascade of events that cause precise redistribution of Ca(2+) among the SR, cytoplasm, and mitochondria through altering the Ca(2+) permeability of the transverse tubular system membrane. This redistribution of Ca(2+) allows mice with moderate RyR1 leak to maintain normal function; however, severe RyR1 leak with RYR1 mutations reduces the capacity to generate force. Our results reveal the mechanism underlying force preservation, increased ATP metabolism, and susceptibility to MH in individuals with gain-of-function RYR1 mutations. |
format | Online Article Text |
id | pubmed-8550231 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-85502312021-11-05 Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle Lamboley, Cedric R. Pearce, Luke Seng, Crystal Meizoso-Huesca, Aldo Singh, Daniel P. Frankish, Barnaby P. Kaura, Vikas Lo, Harriet P. Ferguson, Charles Allen, Paul D. Hopkins, Philip M. Parton, Robert G. Murphy, Robyn M. van der Poel, Chris Barclay, Christopher J. Launikonis, Bradley S. Sci Adv Biomedicine and Life Sciences Muscle contraction depends on tightly regulated Ca(2+) release. Aberrant Ca(2+) leak through ryanodine receptor 1 (RyR1) on the sarcoplasmic reticulum (SR) membrane can lead to heatstroke and malignant hyperthermia (MH) susceptibility, as well as severe myopathy. However, the mechanism by which Ca(2+) leak drives these pathologies is unknown. Here, we investigate the effects of four mouse genotypes with increasingly severe RyR1 leak in skeletal muscle fibers. We find that RyR1 Ca(2+) leak initiates a cascade of events that cause precise redistribution of Ca(2+) among the SR, cytoplasm, and mitochondria through altering the Ca(2+) permeability of the transverse tubular system membrane. This redistribution of Ca(2+) allows mice with moderate RyR1 leak to maintain normal function; however, severe RyR1 leak with RYR1 mutations reduces the capacity to generate force. Our results reveal the mechanism underlying force preservation, increased ATP metabolism, and susceptibility to MH in individuals with gain-of-function RYR1 mutations. American Association for the Advancement of Science 2021-10-27 /pmc/articles/PMC8550231/ /pubmed/34705503 http://dx.doi.org/10.1126/sciadv.abi7166 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Biomedicine and Life Sciences Lamboley, Cedric R. Pearce, Luke Seng, Crystal Meizoso-Huesca, Aldo Singh, Daniel P. Frankish, Barnaby P. Kaura, Vikas Lo, Harriet P. Ferguson, Charles Allen, Paul D. Hopkins, Philip M. Parton, Robert G. Murphy, Robyn M. van der Poel, Chris Barclay, Christopher J. Launikonis, Bradley S. Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle |
title | Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle |
title_full | Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle |
title_fullStr | Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle |
title_full_unstemmed | Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle |
title_short | Ryanodine receptor leak triggers fiber Ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle |
title_sort | ryanodine receptor leak triggers fiber ca(2+) redistribution to preserve force and elevate basal metabolism in skeletal muscle |
topic | Biomedicine and Life Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550231/ https://www.ncbi.nlm.nih.gov/pubmed/34705503 http://dx.doi.org/10.1126/sciadv.abi7166 |
work_keys_str_mv | AT lamboleycedricr ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle AT pearceluke ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle AT sengcrystal ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle AT meizosohuescaaldo ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle AT singhdanielp ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle AT frankishbarnabyp ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle AT kauravikas ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle AT loharrietp ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle AT fergusoncharles ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle AT allenpauld ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle AT hopkinsphilipm ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle AT partonrobertg ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle AT murphyrobynm ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle AT vanderpoelchris ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle AT barclaychristopherj ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle AT launikonisbradleys ryanodinereceptorleaktriggersfiberca2redistributiontopreserveforceandelevatebasalmetabolisminskeletalmuscle |