Cargando…
Machine learning to determine the main factors affecting creep rates in laser powder bed fusion
There is an increasing need for the use of additive manufacturing (AM) to produce improved critical application engineering components. However, the materials manufactured using AM perform well below their traditionally manufactured counterparts, particularly for creep and fatigue. Research has show...
Autores principales: | Sanchez, Salomé, Rengasamy, Divish, Hyde, Christopher J., Figueredo, Grazziela P., Rothwell, Benjamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550259/ https://www.ncbi.nlm.nih.gov/pubmed/34720456 http://dx.doi.org/10.1007/s10845-021-01785-0 |
Ejemplares similares
-
Deep Learning with Dynamically Weighted Loss Function for Sensor-Based Prognostics and Health Management
por: Rengasamy, Divish, et al.
Publicado: (2020) -
Laser Powder Bed Fusion of Metal Coated Copper Powders
por: Lindström, Viktor, et al.
Publicado: (2020) -
Laser Powder Bed Fusion of Chromium Bronze Using Recycled Powder
por: Pelevin, Ivan A., et al.
Publicado: (2021) -
Gas Atomization of Duplex Stainless Steel Powder for Laser Powder Bed Fusion
por: Cui, Chengsong, et al.
Publicado: (2023) -
Low-Power Laser Powder Bed Fusion Processing of Scalmalloy(®)
por: Martucci, Alessandra, et al.
Publicado: (2022)