Cargando…

On the asymptotic behavior of the Douglas–Rachford and proximal-point algorithms for convex optimization

Banjac et al. (J Optim Theory Appl 183(2):490–519, 2019) recently showed that the Douglas–Rachford algorithm provides certificates of infeasibility for a class of convex optimization problems. In particular, they showed that the difference between consecutive iterates generated by the algorithm conv...

Descripción completa

Detalles Bibliográficos
Autores principales: Banjac, Goran, Lygeros, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550334/
https://www.ncbi.nlm.nih.gov/pubmed/34721701
http://dx.doi.org/10.1007/s11590-021-01706-3
Descripción
Sumario:Banjac et al. (J Optim Theory Appl 183(2):490–519, 2019) recently showed that the Douglas–Rachford algorithm provides certificates of infeasibility for a class of convex optimization problems. In particular, they showed that the difference between consecutive iterates generated by the algorithm converges to certificates of primal and dual strong infeasibility. Their result was shown in a finite-dimensional Euclidean setting and for a particular structure of the constraint set. In this paper, we extend the result to real Hilbert spaces and a general nonempty closed convex set. Moreover, we show that the proximal-point algorithm applied to the set of optimality conditions of the problem generates similar infeasibility certificates.