Cargando…
On the asymptotic behavior of the Douglas–Rachford and proximal-point algorithms for convex optimization
Banjac et al. (J Optim Theory Appl 183(2):490–519, 2019) recently showed that the Douglas–Rachford algorithm provides certificates of infeasibility for a class of convex optimization problems. In particular, they showed that the difference between consecutive iterates generated by the algorithm conv...
Autores principales: | Banjac, Goran, Lygeros, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550334/ https://www.ncbi.nlm.nih.gov/pubmed/34721701 http://dx.doi.org/10.1007/s11590-021-01706-3 |
Ejemplares similares
-
A convergent relaxation of the Douglas–Rachford algorithm
por: Thao, Nguyen Hieu
Publicado: (2018) -
Convergence Rates of Forward–Douglas–Rachford Splitting Method
por: Molinari, Cesare, et al.
Publicado: (2019) -
An extension of the proximal point algorithm beyond convexity
por: Grad, Sorin-Mihai, et al.
Publicado: (2021) -
Hybrid Newton–Successive Substitution Method for Multiphase Rachford-Rice Equations
por: Gao, Ran, et al.
Publicado: (2018) -
A primal-dual algorithm framework for convex saddle-point optimization
por: Zhang, Benxin, et al.
Publicado: (2017)