Cargando…
Determining travel fluxes in epidemic areas
Infectious diseases attack humans from time to time and threaten the lives and survival of people all around the world. An important strategy to prevent the spatial spread of infectious diseases is to restrict population travel. With the reduction of the epidemic situation, when and where travel res...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550429/ https://www.ncbi.nlm.nih.gov/pubmed/34705832 http://dx.doi.org/10.1371/journal.pcbi.1009473 |
_version_ | 1784590958333001728 |
---|---|
author | Chen, Daipeng Xue, Yuyi Xiao, Yanni |
author_facet | Chen, Daipeng Xue, Yuyi Xiao, Yanni |
author_sort | Chen, Daipeng |
collection | PubMed |
description | Infectious diseases attack humans from time to time and threaten the lives and survival of people all around the world. An important strategy to prevent the spatial spread of infectious diseases is to restrict population travel. With the reduction of the epidemic situation, when and where travel restrictions can be lifted, and how to organize orderly movement patterns become critical and fall within the scope of this study. We define a novel diffusion distance derived from the estimated mobility network, based on which we provide a general model to describe the spatiotemporal spread of infectious diseases with a random diffusion process and a deterministic drift process of the population. We consequently develop a multi-source data fusion method to determine the population flow in epidemic areas. In this method, we first select available subregions in epidemic areas, and then provide solutions to initiate new travel flux among these subregions. To verify our model and method, we analyze the multi-source data from mainland China and obtain a new travel flux triggering scheme in the selected 29 cities with the most active population movements in mainland China. The testable predictions in these selected cities show that reopening the borders in accordance with our proposed travel flux will not cause a second outbreak of COVID-19 in these cities. The finding provides a methodology of re-triggering travel flux during the weakening spread stage of the epidemic. |
format | Online Article Text |
id | pubmed-8550429 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-85504292021-10-28 Determining travel fluxes in epidemic areas Chen, Daipeng Xue, Yuyi Xiao, Yanni PLoS Comput Biol Research Article Infectious diseases attack humans from time to time and threaten the lives and survival of people all around the world. An important strategy to prevent the spatial spread of infectious diseases is to restrict population travel. With the reduction of the epidemic situation, when and where travel restrictions can be lifted, and how to organize orderly movement patterns become critical and fall within the scope of this study. We define a novel diffusion distance derived from the estimated mobility network, based on which we provide a general model to describe the spatiotemporal spread of infectious diseases with a random diffusion process and a deterministic drift process of the population. We consequently develop a multi-source data fusion method to determine the population flow in epidemic areas. In this method, we first select available subregions in epidemic areas, and then provide solutions to initiate new travel flux among these subregions. To verify our model and method, we analyze the multi-source data from mainland China and obtain a new travel flux triggering scheme in the selected 29 cities with the most active population movements in mainland China. The testable predictions in these selected cities show that reopening the borders in accordance with our proposed travel flux will not cause a second outbreak of COVID-19 in these cities. The finding provides a methodology of re-triggering travel flux during the weakening spread stage of the epidemic. Public Library of Science 2021-10-27 /pmc/articles/PMC8550429/ /pubmed/34705832 http://dx.doi.org/10.1371/journal.pcbi.1009473 Text en © 2021 Chen et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Chen, Daipeng Xue, Yuyi Xiao, Yanni Determining travel fluxes in epidemic areas |
title | Determining travel fluxes in epidemic areas |
title_full | Determining travel fluxes in epidemic areas |
title_fullStr | Determining travel fluxes in epidemic areas |
title_full_unstemmed | Determining travel fluxes in epidemic areas |
title_short | Determining travel fluxes in epidemic areas |
title_sort | determining travel fluxes in epidemic areas |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550429/ https://www.ncbi.nlm.nih.gov/pubmed/34705832 http://dx.doi.org/10.1371/journal.pcbi.1009473 |
work_keys_str_mv | AT chendaipeng determiningtravelfluxesinepidemicareas AT xueyuyi determiningtravelfluxesinepidemicareas AT xiaoyanni determiningtravelfluxesinepidemicareas |