Cargando…
Analysing factorizations of action-value networks for cooperative multi-agent reinforcement learning
Recent years have seen the application of deep reinforcement learning techniques to cooperative multi-agent systems, with great empirical success. However, given the lack of theoretical insight, it remains unclear what the employed neural networks are learning, or how we should enhance their learnin...
Autores principales: | Castellini, Jacopo, Oliehoek, Frans A., Savani, Rahul, Whiteson, Shimon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550438/ https://www.ncbi.nlm.nih.gov/pubmed/34720685 http://dx.doi.org/10.1007/s10458-021-09506-w |
Ejemplares similares
-
Value-Based Planning for Teams of Agents in Stochastic Partially Observable Environments
por: Oliehoek, Frans
Publicado: (2010) -
Knowledge Reuse of Multi-Agent Reinforcement Learning in Cooperative Tasks
por: Shi, Daming, et al.
Publicado: (2022) -
DTDE: A new cooperative multi-agent reinforcement learning framework
por: Wen, Guanghui, et al.
Publicado: (2021) -
Neuroevolutionary reinforcement learning for generalized control of simulated helicopters
por: Koppejan, Rogier, et al.
Publicado: (2011) -
Multi-Agent Reinforcement Learning for Joint Cooperative Spectrum Sensing and Channel Access in Cognitive UAV Networks
por: Jiang, Weiheng, et al.
Publicado: (2022)