Cargando…
Extending greedy feature selection algorithms to multiple solutions
Most feature selection methods identify only a single solution. This is acceptable for predictive purposes, but is not sufficient for knowledge discovery if multiple solutions exist. We propose a strategy to extend a class of greedy methods to efficiently identify multiple solutions, and show under...
Autores principales: | Borboudakis, Giorgos, Tsamardinos, Ioannis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550441/ https://www.ncbi.nlm.nih.gov/pubmed/34720675 http://dx.doi.org/10.1007/s10618-020-00731-7 |
Ejemplares similares
-
A greedy feature selection algorithm for Big Data of high dimensionality
por: Tsamardinos, Ioannis, et al.
Publicado: (2018) -
Bootstrapping the out-of-sample predictions for efficient and accurate cross-validation
por: Tsamardinos, Ioannis, et al.
Publicado: (2018) -
Constraint-based causal discovery with mixed data
por: Tsagris, Michail, et al.
Publicado: (2018) -
Just Add Data: automated predictive modeling for knowledge discovery and feature selection
por: Tsamardinos, Ioannis, et al.
Publicado: (2022) -
Beware greedy algorithms
por: Simmons, Benno I., et al.
Publicado: (2019)