Cargando…
Spectral Shape Recovery and Analysis Via Data-driven Connections
We introduce a novel learning-based method to recover shapes from their Laplacian spectra, based on establishing and exploring connections in a learned latent space. The core of our approach consists in a cycle-consistent module that maps between a learned latent space and sequences of eigenvalues....
Autores principales: | Marin, Riccardo, Rampini, Arianna, Castellani, Umberto, Rodolà, Emanuele, Ovsjanikov, Maks, Melzi, Simone |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550494/ https://www.ncbi.nlm.nih.gov/pubmed/34720402 http://dx.doi.org/10.1007/s11263-021-01492-6 |
Ejemplares similares
-
Non‐Isometric Shape Matching via Functional Maps on Landmark‐Adapted Bases
por: Panine, Mikhail, et al.
Publicado: (2022) -
Genomics data analysis via spectral shape and topology
por: Amézquita, Erik J., et al.
Publicado: (2023) -
Determination of Dynamic Brain Connectivity via Spectral Analysis
por: Robinson, Peter A., et al.
Publicado: (2021) -
Spectral geometry of shapes
por: Hu, Jiaxiang, et al.
Publicado: (2019) -
Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds
por: Cenedese, Mattia, et al.
Publicado: (2022)