Cargando…
Complete Gradient Estimates of Quantum Markov Semigroups
In this article we introduce a complete gradient estimate for symmetric quantum Markov semigroups on von Neumann algebras equipped with a normal faithful tracial state, which implies semi-convexity of the entropy with respect to the recently introduced noncommutative 2-Wasserstein distance. We show...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550562/ https://www.ncbi.nlm.nih.gov/pubmed/34776525 http://dx.doi.org/10.1007/s00220-021-04199-4 |
Sumario: | In this article we introduce a complete gradient estimate for symmetric quantum Markov semigroups on von Neumann algebras equipped with a normal faithful tracial state, which implies semi-convexity of the entropy with respect to the recently introduced noncommutative 2-Wasserstein distance. We show that this complete gradient estimate is stable under tensor products and free products and establish its validity for a number of examples. As an application we prove a complete modified logarithmic Sobolev inequality with optimal constant for Poisson-type semigroups on free group factors. |
---|