Cargando…

Complete Gradient Estimates of Quantum Markov Semigroups

In this article we introduce a complete gradient estimate for symmetric quantum Markov semigroups on von Neumann algebras equipped with a normal faithful tracial state, which implies semi-convexity of the entropy with respect to the recently introduced noncommutative 2-Wasserstein distance. We show...

Descripción completa

Detalles Bibliográficos
Autores principales: Wirth, Melchior, Zhang, Haonan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550562/
https://www.ncbi.nlm.nih.gov/pubmed/34776525
http://dx.doi.org/10.1007/s00220-021-04199-4
Descripción
Sumario:In this article we introduce a complete gradient estimate for symmetric quantum Markov semigroups on von Neumann algebras equipped with a normal faithful tracial state, which implies semi-convexity of the entropy with respect to the recently introduced noncommutative 2-Wasserstein distance. We show that this complete gradient estimate is stable under tensor products and free products and establish its validity for a number of examples. As an application we prove a complete modified logarithmic Sobolev inequality with optimal constant for Poisson-type semigroups on free group factors.