Cargando…

Translation of curative therapy concepts with T cell and cytokine antibody combinations for type 1 diabetes reversal in the IDDM rat

ABSTRACT: Proinflammatory cytokines released from the pancreatic islet immune cell infiltrate in type 1 diabetes (T1D) cause insulinopenia as a result of severe beta cell loss due to apoptosis. Diabetes prevention strategies targeting different cytokines with antibodies in combination with a T cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Jörns, Anne, Arndt, Tanja, Yamada, Shinichiro, Ishikawa, Daichi, Yoshimoto, Toshiaki, Terbish, Taivankhuu, Wedekind, Dirk, van der Meide, Peter H., Lenzen, Sigurd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550584/
https://www.ncbi.nlm.nih.gov/pubmed/32607871
http://dx.doi.org/10.1007/s00109-020-01941-8
Descripción
Sumario:ABSTRACT: Proinflammatory cytokines released from the pancreatic islet immune cell infiltrate in type 1 diabetes (T1D) cause insulinopenia as a result of severe beta cell loss due to apoptosis. Diabetes prevention strategies targeting different cytokines with antibodies in combination with a T cell antibody, anti-TCR, have been assessed for therapy success in the LEW.1AR1-iddm (IDDM) rat, an animal model of human T1D. Immediately after diabetes manifestation, antibody combination therapies were initiated over 5 days with anti-TNF-α (tumour necrosis factor), anti-IL-1β (interleukin), or anti-IFN-γ (interferon) together with anti-TCR for the reversal of the diabetic metabolic state in the IDDM rat. Anti-TCR alone showed only a very limited therapy success with respect to a reduction of immune cell infiltration and beta cell mass regeneration. Anti-TCR combinations with anti-IL-1β or anti-IFN-γ were also not able to abolish the increased beta cell apoptosis rate and the activated immune cell infiltrate leading to a permanent beta cell loss. In contrast, all anti-TCR combinations with anti-TNF-α provided sustained therapy success over 60 to 360 days. The triple combination of anti-TCR with anti-TNF-α plus anti-IL-1β was most effective in regaining sustained normoglycaemia with an intact islet structure in a completely infiltration-free pancreas and with a normal beta cell mass. Besides the triple combination, the double antibody combination of anti-TCR with anti-TNF-α proved to be the most suited therapy for reversal of the T1D metabolic state due to effective beta cell regeneration in an infiltration free pancreas. KEY MESSAGES: Anti-TCR is a cornerstone in combination therapy for autoimmune diabetes reversal. The combination of anti-TCR with anti-TNF-α was most effective in reversing islet immune cell infiltration. Anti-TCR combined with anti-IL-1β was not effective in this respect. The combination of anti-TCR with anti-TNF-α showed a sustained effect over 1 year. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00109-020-01941-8) contains supplementary material, which is available to authorized users.