Cargando…
Best Fit Bin Packing with Random Order Revisited
Best Fit is a well known online algorithm for the bin packing problem, where a collection of one-dimensional items has to be packed into a minimum number of unit-sized bins. In a seminal work, Kenyon [SODA 1996] introduced the (asymptotic) random order ratio as an alternative performance measure for...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550633/ https://www.ncbi.nlm.nih.gov/pubmed/34776569 http://dx.doi.org/10.1007/s00453-021-00844-5 |
_version_ | 1784590995579469824 |
---|---|
author | Albers, Susanne Khan, Arindam Ladewig, Leon |
author_facet | Albers, Susanne Khan, Arindam Ladewig, Leon |
author_sort | Albers, Susanne |
collection | PubMed |
description | Best Fit is a well known online algorithm for the bin packing problem, where a collection of one-dimensional items has to be packed into a minimum number of unit-sized bins. In a seminal work, Kenyon [SODA 1996] introduced the (asymptotic) random order ratio as an alternative performance measure for online algorithms. Here, an adversary specifies the items, but the order of arrival is drawn uniformly at random. Kenyon’s result establishes lower and upper bounds of 1.08 and 1.5, respectively, for the random order ratio of Best Fit. Although this type of analysis model became increasingly popular in the field of online algorithms, no progress has been made for the Best Fit algorithm after the result of Kenyon. We study the random order ratio of Best Fit and tighten the long-standing gap by establishing an improved lower bound of 1.10. For the case where all items are larger than 1/3, we show that the random order ratio converges quickly to 1.25. It is the existence of such large items that crucially determines the performance of Best Fit in the general case. Moreover, this case is closely related to the classical maximum-cardinality matching problem in the fully online model. As a side product, we show that Best Fit satisfies a monotonicity property on such instances, unlike in the general case. In addition, we initiate the study of the absolute random order ratio for this problem. In contrast to asymptotic ratios, absolute ratios must hold even for instances that can be packed into a small number of bins. We show that the absolute random order ratio of Best Fit is at least 1.3. For the case where all items are larger than 1/3, we derive upper and lower bounds of 21/16 and 1.2, respectively. |
format | Online Article Text |
id | pubmed-8550633 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-85506332021-11-10 Best Fit Bin Packing with Random Order Revisited Albers, Susanne Khan, Arindam Ladewig, Leon Algorithmica Article Best Fit is a well known online algorithm for the bin packing problem, where a collection of one-dimensional items has to be packed into a minimum number of unit-sized bins. In a seminal work, Kenyon [SODA 1996] introduced the (asymptotic) random order ratio as an alternative performance measure for online algorithms. Here, an adversary specifies the items, but the order of arrival is drawn uniformly at random. Kenyon’s result establishes lower and upper bounds of 1.08 and 1.5, respectively, for the random order ratio of Best Fit. Although this type of analysis model became increasingly popular in the field of online algorithms, no progress has been made for the Best Fit algorithm after the result of Kenyon. We study the random order ratio of Best Fit and tighten the long-standing gap by establishing an improved lower bound of 1.10. For the case where all items are larger than 1/3, we show that the random order ratio converges quickly to 1.25. It is the existence of such large items that crucially determines the performance of Best Fit in the general case. Moreover, this case is closely related to the classical maximum-cardinality matching problem in the fully online model. As a side product, we show that Best Fit satisfies a monotonicity property on such instances, unlike in the general case. In addition, we initiate the study of the absolute random order ratio for this problem. In contrast to asymptotic ratios, absolute ratios must hold even for instances that can be packed into a small number of bins. We show that the absolute random order ratio of Best Fit is at least 1.3. For the case where all items are larger than 1/3, we derive upper and lower bounds of 21/16 and 1.2, respectively. Springer US 2021-07-01 2021 /pmc/articles/PMC8550633/ /pubmed/34776569 http://dx.doi.org/10.1007/s00453-021-00844-5 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Albers, Susanne Khan, Arindam Ladewig, Leon Best Fit Bin Packing with Random Order Revisited |
title | Best Fit Bin Packing with Random Order Revisited |
title_full | Best Fit Bin Packing with Random Order Revisited |
title_fullStr | Best Fit Bin Packing with Random Order Revisited |
title_full_unstemmed | Best Fit Bin Packing with Random Order Revisited |
title_short | Best Fit Bin Packing with Random Order Revisited |
title_sort | best fit bin packing with random order revisited |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550633/ https://www.ncbi.nlm.nih.gov/pubmed/34776569 http://dx.doi.org/10.1007/s00453-021-00844-5 |
work_keys_str_mv | AT alberssusanne bestfitbinpackingwithrandomorderrevisited AT khanarindam bestfitbinpackingwithrandomorderrevisited AT ladewigleon bestfitbinpackingwithrandomorderrevisited |