Cargando…
Bayesian inference for continuous-time hidden Markov models with an unknown number of states
We consider the modeling of data generated by a latent continuous-time Markov jump process with a state space of finite but unknown dimensions. Typically in such models, the number of states has to be pre-specified, and Bayesian inference for a fixed number of states has not been studied until recen...
Autores principales: | Luo, Yu, Stephens, David A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550639/ https://www.ncbi.nlm.nih.gov/pubmed/34776654 http://dx.doi.org/10.1007/s11222-021-10032-8 |
Ejemplares similares
-
Scalable Bayesian Inference for Coupled Hidden Markov and Semi-Markov Models
por: Touloupou, Panayiota, et al.
Publicado: (2019) -
Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression
por: Wiedenhoeft, John, et al.
Publicado: (2016) -
Inference in Hidden Markov Models
por: Cappe, Olivier
Publicado: (2005) -
Explicit-Duration Hidden Markov Model Inference of UP-DOWN States from Continuous Signals
por: McFarland, James M., et al.
Publicado: (2011) -
HaplotypeCN: Copy Number Haplotype Inference with Hidden Markov Model and Localized Haplotype Clustering
por: Lin, Yen-Jen, et al.
Publicado: (2014)