Cargando…
Portability of semantic and spatial–temporal machine learning methods to analyse social media for near-real-time disaster monitoring
Up-to-date information about an emergency is crucial for effective disaster management. However, severe restrictions impede the creation of spatiotemporal information by current remote sensing-based monitoring systems, especially at the beginning of a disaster. Multiple publications have shown promi...
Autores principales: | Havas, Clemens, Resch, Bernd |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550645/ https://www.ncbi.nlm.nih.gov/pubmed/34789962 http://dx.doi.org/10.1007/s11069-021-04808-4 |
Ejemplares similares
-
E2mC: Improving Emergency Management Service Practice through Social Media and Crowdsourcing Analysis in Near Real Time
por: Havas, Clemens, et al.
Publicado: (2017) -
An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time
por: Kogan, Nicole E., et al.
Publicado: (2021) -
A Conditional GAN for Generating Time Series Data for Stress Detection in Wearable Physiological Sensor Data
por: Ehrhart, Maximilian, et al.
Publicado: (2022) -
Enhanced geocoding precision for location inference of tweet text using spaCy, Nominatim and Google Maps. A comparative analysis of the influence of data selection
por: Serere, Helen Ngonidzashe, et al.
Publicado: (2023) -
Abundant Topological Outliers in Social Media Data and Their Effect on Spatial Analysis
por: Westerholt, Rene, et al.
Publicado: (2016)