Cargando…
Fluctuations of extreme eigenvalues of sparse Erdős–Rényi graphs
We consider a class of sparse random matrices which includes the adjacency matrix of the Erdős–Rényi graph [Formula: see text] . We show that if [Formula: see text] then all nontrivial eigenvalues away from 0 have asymptotically Gaussian fluctuations. These fluctuations are governed by a single rand...
Autores principales: | He, Yukun, Knowles, Antti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550707/ https://www.ncbi.nlm.nih.gov/pubmed/34720301 http://dx.doi.org/10.1007/s00440-021-01054-4 |
Ejemplares similares
-
Delocalization Transition for Critical Erdős–Rényi Graphs
por: Alt, Johannes, et al.
Publicado: (2021) -
Large Deviations for Subcritical Bootstrap Percolation on the Erdős–Rényi Graph
por: Angel, Omer, et al.
Publicado: (2021) -
Generalization of the small-world effect on a model approaching the Erdős–Rényi random graph
por: Maier, Benjamin F.
Publicado: (2019) -
Publisher Correction: Generalization of the small-world effect on a model approaching the Erdős–Rényi random graph
por: Maier, Benjamin F.
Publicado: (2020) -
Minimum Winfree loop determines self-sustained oscillations in excitable Erdös-Rényi random networks
por: Qian, Yu, et al.
Publicado: (2017)