Cargando…
Existence, uniqueness and regularity of the projection onto differentiable manifolds
We investigate the maximal open domain [Formula: see text] on which the orthogonal projection map p onto a subset [Formula: see text] can be defined and study essential properties of p. We prove that if M is a [Formula: see text] submanifold of [Formula: see text] satisfying a Lipschitz condition on...
Autores principales: | Leobacher, Gunther, Steinicke, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550735/ https://www.ncbi.nlm.nih.gov/pubmed/34720315 http://dx.doi.org/10.1007/s10455-021-09788-z |
Ejemplares similares
-
Exception Sets of Intrinsic and Piecewise Lipschitz Functions
por: Leobacher, Gunther, et al.
Publicado: (2022) -
Existence and regularity of minimal surfaces on Riemannian manifolds (MN-27)
por: Pitts, Jon T
Publicado: (2014) -
Existence, uniqueness and comparison results for BSDEs with Lévy jumps in an extended monotonic generator setting
por: Geiss, Christel, et al.
Publicado: (2018) -
Causal Learning via Manifold Regularization
por: Hill, Steven M., et al.
Publicado: (2019) -
Manifold regularization for sparse unmixing of hyperspectral images
por: Liu, Junmin, et al.
Publicado: (2016)