Cargando…
Training Image Free High-Order Stochastic Simulation Based on Aggregated Kernel Statistics
A training image free, high-order sequential simulation method is proposed herein, which is based on the efficient inference of high-order spatial statistics from the available sample data. A statistical learning framework in kernel space is adopted to develop the proposed simulation method. Specifi...
Autores principales: | Yao, Lingqing, Dimitrakopoulos, Roussos, Gamache, Michel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550746/ https://www.ncbi.nlm.nih.gov/pubmed/34721727 http://dx.doi.org/10.1007/s11004-021-09923-3 |
Ejemplares similares
-
High-Order Sequential Simulation via Statistical Learning in Reproducing Kernel Hilbert Space
por: Yao, Lingqing, et al.
Publicado: (2019) -
A New Computational Model of High-Order Stochastic Simulation Based on Spatial Legendre Moments
por: Yao, Lingqing, et al.
Publicado: (2018) -
A New Non-stationary High-order Spatial Sequential Simulation Method
por: Haji Abolhassani, Amir Abbas, et al.
Publicado: (2022) -
High-Order Spatial Simulation Using Legendre-Like Orthogonal Splines
por: Minniakhmetov, Ilnur, et al.
Publicado: (2018) -
Simultaneous Stochastic Optimization of Mining Complexes and Mineral Value Chains
por: Goodfellow, Ryan, et al.
Publicado: (2017)