Cargando…
Early prediction of in-hospital death of COVID-19 patients: a machine-learning model based on age, blood analyses, and chest x-ray score
An early-warning model to predict in-hospital mortality on admission of COVID-19 patients at an emergency department (ED) was developed and validated using a machine-learning model. In total, 2782 patients were enrolled between March 2020 and December 2020, including 2106 patients (first wave) and 6...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550757/ https://www.ncbi.nlm.nih.gov/pubmed/34661530 http://dx.doi.org/10.7554/eLife.70640 |
_version_ | 1784591023866904576 |
---|---|
author | Garrafa, Emirena Vezzoli, Marika Ravanelli, Marco Farina, Davide Borghesi, Andrea Calza, Stefano Maroldi, Roberto |
author_facet | Garrafa, Emirena Vezzoli, Marika Ravanelli, Marco Farina, Davide Borghesi, Andrea Calza, Stefano Maroldi, Roberto |
author_sort | Garrafa, Emirena |
collection | PubMed |
description | An early-warning model to predict in-hospital mortality on admission of COVID-19 patients at an emergency department (ED) was developed and validated using a machine-learning model. In total, 2782 patients were enrolled between March 2020 and December 2020, including 2106 patients (first wave) and 676 patients (second wave) in the COVID-19 outbreak in Italy. The first-wave patients were divided into two groups with 1474 patients used to train the model, and 632 to validate it. The 676 patients in the second wave were used to test the model. Age, 17 blood analytes, and Brescia chest X-ray score were the variables processed using a random forests classification algorithm to build and validate the model. Receiver operating characteristic (ROC) analysis was used to assess the model performances. A web-based death-risk calculator was implemented and integrated within the Laboratory Information System of the hospital. The final score was constructed by age (the most powerful predictor), blood analytes (the strongest predictors were lactate dehydrogenase, D-dimer, neutrophil/lymphocyte ratio, C-reactive protein, lymphocyte %, ferritin std, and monocyte %), and Brescia chest X-ray score (https://bdbiomed.shinyapps.io/covid19score/). The areas under the ROC curve obtained for the three groups (training, validating, and testing) were 0.98, 0.83, and 0.78, respectively. The model predicts in-hospital mortality on the basis of data that can be obtained in a short time, directly at the ED on admission. It functions as a web-based calculator, providing a risk score which is easy to interpret. It can be used in the triage process to support the decision on patient allocation. |
format | Online Article Text |
id | pubmed-8550757 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-85507572021-10-29 Early prediction of in-hospital death of COVID-19 patients: a machine-learning model based on age, blood analyses, and chest x-ray score Garrafa, Emirena Vezzoli, Marika Ravanelli, Marco Farina, Davide Borghesi, Andrea Calza, Stefano Maroldi, Roberto eLife Biochemistry and Chemical Biology An early-warning model to predict in-hospital mortality on admission of COVID-19 patients at an emergency department (ED) was developed and validated using a machine-learning model. In total, 2782 patients were enrolled between March 2020 and December 2020, including 2106 patients (first wave) and 676 patients (second wave) in the COVID-19 outbreak in Italy. The first-wave patients were divided into two groups with 1474 patients used to train the model, and 632 to validate it. The 676 patients in the second wave were used to test the model. Age, 17 blood analytes, and Brescia chest X-ray score were the variables processed using a random forests classification algorithm to build and validate the model. Receiver operating characteristic (ROC) analysis was used to assess the model performances. A web-based death-risk calculator was implemented and integrated within the Laboratory Information System of the hospital. The final score was constructed by age (the most powerful predictor), blood analytes (the strongest predictors were lactate dehydrogenase, D-dimer, neutrophil/lymphocyte ratio, C-reactive protein, lymphocyte %, ferritin std, and monocyte %), and Brescia chest X-ray score (https://bdbiomed.shinyapps.io/covid19score/). The areas under the ROC curve obtained for the three groups (training, validating, and testing) were 0.98, 0.83, and 0.78, respectively. The model predicts in-hospital mortality on the basis of data that can be obtained in a short time, directly at the ED on admission. It functions as a web-based calculator, providing a risk score which is easy to interpret. It can be used in the triage process to support the decision on patient allocation. eLife Sciences Publications, Ltd 2021-10-18 /pmc/articles/PMC8550757/ /pubmed/34661530 http://dx.doi.org/10.7554/eLife.70640 Text en © 2021, Garrafa et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Biochemistry and Chemical Biology Garrafa, Emirena Vezzoli, Marika Ravanelli, Marco Farina, Davide Borghesi, Andrea Calza, Stefano Maroldi, Roberto Early prediction of in-hospital death of COVID-19 patients: a machine-learning model based on age, blood analyses, and chest x-ray score |
title | Early prediction of in-hospital death of COVID-19 patients: a machine-learning model based on age, blood analyses, and chest x-ray score |
title_full | Early prediction of in-hospital death of COVID-19 patients: a machine-learning model based on age, blood analyses, and chest x-ray score |
title_fullStr | Early prediction of in-hospital death of COVID-19 patients: a machine-learning model based on age, blood analyses, and chest x-ray score |
title_full_unstemmed | Early prediction of in-hospital death of COVID-19 patients: a machine-learning model based on age, blood analyses, and chest x-ray score |
title_short | Early prediction of in-hospital death of COVID-19 patients: a machine-learning model based on age, blood analyses, and chest x-ray score |
title_sort | early prediction of in-hospital death of covid-19 patients: a machine-learning model based on age, blood analyses, and chest x-ray score |
topic | Biochemistry and Chemical Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550757/ https://www.ncbi.nlm.nih.gov/pubmed/34661530 http://dx.doi.org/10.7554/eLife.70640 |
work_keys_str_mv | AT garrafaemirena earlypredictionofinhospitaldeathofcovid19patientsamachinelearningmodelbasedonagebloodanalysesandchestxrayscore AT vezzolimarika earlypredictionofinhospitaldeathofcovid19patientsamachinelearningmodelbasedonagebloodanalysesandchestxrayscore AT ravanellimarco earlypredictionofinhospitaldeathofcovid19patientsamachinelearningmodelbasedonagebloodanalysesandchestxrayscore AT farinadavide earlypredictionofinhospitaldeathofcovid19patientsamachinelearningmodelbasedonagebloodanalysesandchestxrayscore AT borghesiandrea earlypredictionofinhospitaldeathofcovid19patientsamachinelearningmodelbasedonagebloodanalysesandchestxrayscore AT calzastefano earlypredictionofinhospitaldeathofcovid19patientsamachinelearningmodelbasedonagebloodanalysesandchestxrayscore AT maroldiroberto earlypredictionofinhospitaldeathofcovid19patientsamachinelearningmodelbasedonagebloodanalysesandchestxrayscore |