Cargando…
End-to-end speech emotion recognition using a novel context-stacking dilated convolution neural network
Amongst the various characteristics of a speech signal, the expression of emotion is one of the characteristics that exhibits the slowest temporal dynamics. Hence, a performant speech emotion recognition (SER) system requires a predictive model that is capable of learning sufficiently long temporal...
Autores principales: | Tang, Duowei, Kuppens, Peter, Geurts, Luc, van Waterschoot, Toon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550764/ https://www.ncbi.nlm.nih.gov/pubmed/34721556 http://dx.doi.org/10.1186/s13636-021-00208-5 |
Ejemplares similares
-
Toward learning robust contrastive embeddings for binaural sound source localization
por: Tang, Duowei, et al.
Publicado: (2022) -
In Search of State and Trait Emotion Markers in Mobile-Sensed Language: Field Study
por: Carlier, Chiara, et al.
Publicado: (2022) -
Speech Emotion Recognition Using Convolution Neural Networks and Multi-Head Convolutional Transformer
por: Ullah, Rizwan, et al.
Publicado: (2023) -
Speaker Recognition Using Constrained Convolutional Neural Networks in Emotional Speech
por: Simić, Nikola, et al.
Publicado: (2022) -
End-to-end emotional speech recognition using acoustic model adaptation based on knowledge distillation
por: Yun, Hong-In, et al.
Publicado: (2023)