Cargando…

Analysis and Optimal Velocity Control of a Stochastic Convective Cahn–Hilliard Equation

A Cahn–Hilliard equation with stochastic multiplicative noise and a random convection term is considered. The model describes isothermal phase-separation occurring in a moving fluid, and accounts for the randomness appearing at the microscopic level both in the phase-separation itself and in the flo...

Descripción completa

Detalles Bibliográficos
Autor principal: Scarpa, Luca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550788/
https://www.ncbi.nlm.nih.gov/pubmed/34720441
http://dx.doi.org/10.1007/s00332-021-09702-8
Descripción
Sumario:A Cahn–Hilliard equation with stochastic multiplicative noise and a random convection term is considered. The model describes isothermal phase-separation occurring in a moving fluid, and accounts for the randomness appearing at the microscopic level both in the phase-separation itself and in the flow-inducing process. The call for a random component in the convection term stems naturally from applications, as the fluid’s stirring procedure is usually caused by mechanical or magnetic devices. Well-posedness of the state system is addressed, and optimisation of a standard tracking type cost with respect to the velocity control is then studied. Existence of optimal controls is proved, and the Gâteaux–Fréchet differentiability of the control-to-state map is shown. Lastly, the corresponding adjoint backward problem is analysed, and the first-order necessary conditions for optimality are derived in terms of a variational inequality involving the intrinsic adjoint variables.