Cargando…
Improved interval methods for solving circle packing problems in the unit square
In this work computer-assisted optimality proofs are given for the problems of finding the densest packings of 31, 32, and 33 non-overlapping equal circles in a square. In a study of 2005, a fully interval arithmetic based global optimization method was introduced for the problem class, solving the...
Autor principal: | Markót, Mihály Csaba |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550790/ https://www.ncbi.nlm.nih.gov/pubmed/34720422 http://dx.doi.org/10.1007/s10898-021-01086-z |
Ejemplares similares
-
Rigorous packing of unit squares into a circle
por: Montanher, Tiago, et al.
Publicado: (2018) -
New Approaches to Circle Packing in a Square: With Program Codes
por: Szabó, P G, et al.
Publicado: (2007) -
Solving least squares problems /
por: Lawson, Charles L.
Publicado: (1995) -
Solving least squares problems
por: Lawson, Charles L, et al.
Publicado: (1995) -
Solving least squares problems
por: Lawson, Charles L, et al.
Publicado: (1974)