Cargando…

Characterizing the breast cancer lipidome and its interaction with the tissue microbiota

Breast cancer is the most diagnosed cancer amongst women worldwide. We have previously shown that there is a breast microbiota which differs between women who have breast cancer and those who are disease-free. To better understand the local biochemical perturbations occurring with disease and the po...

Descripción completa

Detalles Bibliográficos
Autores principales: Giallourou, Natasa, Urbaniak, Camilla, Puebla-Barragan, Scarlett, Vorkas, Panagiotis A., Swann, Jonathan R., Reid, Gregor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8551188/
https://www.ncbi.nlm.nih.gov/pubmed/34707244
http://dx.doi.org/10.1038/s42003-021-02710-0
Descripción
Sumario:Breast cancer is the most diagnosed cancer amongst women worldwide. We have previously shown that there is a breast microbiota which differs between women who have breast cancer and those who are disease-free. To better understand the local biochemical perturbations occurring with disease and the potential contribution of the breast microbiome, lipid profiling was performed on non-tumor breast tissue collected from 19 healthy women and 42 with breast cancer. Here we identified unique lipid signatures between the two groups with greater amounts of lysophosphatidylcholines and oxidized cholesteryl esters in the tissue from women with breast cancer and lower amounts of ceramides, diacylglycerols, phosphatidylcholines, and phosphatidylethanolamines. By integrating these lipid signatures with the breast bacterial profiles, we observed that Gammaproteobacteria and those from the class Bacillus, were negatively correlated with ceramides, lipids with antiproliferative properties. In the healthy tissues, diacylglyerols were positively associated with Acinetobacter, Lactococcus, Corynebacterium, Prevotella and Streptococcus. These bacterial groups were found to possess the genetic potential to synthesize these lipids. The cause-effect relationships of these observations and their contribution to disease patho-mechanisms warrants further investigation for a disease afflicting millions of women around the world.