Cargando…

Population-level laterality in foraging finless porpoises

Laterality has been reported in many vertebrates, and asymmetrical cerebral hemisphere function has been hypothesized to cause a left-bias in social behavior and a right-bias in feeding behavior. In this paper, we provide the first report of behavioral laterality in free-ranging finless porpoises, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Amano, Masao, Kawano, Yudai, Kubo, Taketo, Kuwahara, Tsuyoshi, Kobayashi, Hayao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8551196/
https://www.ncbi.nlm.nih.gov/pubmed/34707173
http://dx.doi.org/10.1038/s41598-021-00635-6
Descripción
Sumario:Laterality has been reported in many vertebrates, and asymmetrical cerebral hemisphere function has been hypothesized to cause a left-bias in social behavior and a right-bias in feeding behavior. In this paper, we provide the first report of behavioral laterality in free-ranging finless porpoises, which seems to support the aforementioned hypothesis. We observed the turning behavior of finless porpoises in Omura Bay, Japan, using land-based and unmanned aerial system observations. We found a strong tendency in finless porpoises to turn counterclockwise with their right side down when pursuing and catching fish at the surface of the water. Our results suggest that this population of finless porpoises shows consistent right-biased laterality. Right-biased laterality has been observed in various foraging cetaceans and is usually explained by the dominance of the right eye-left cerebral hemisphere in prey recognition; however, right-biased laterality in foraging cetaceans may have multiple causes.