Cargando…
Thickness-dependent in-plane anisotropy of GaTe phonons
Gallium Telluride (GaTe), a layered material with monoclinic crystal structure, has recently attracted a lot of attention due to its unique physical properties and potential applications for angle-resolved photonics and electronics, where optical anisotropies are important. Despite a few reports on...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8551200/ https://www.ncbi.nlm.nih.gov/pubmed/34707186 http://dx.doi.org/10.1038/s41598-021-00673-0 |
Sumario: | Gallium Telluride (GaTe), a layered material with monoclinic crystal structure, has recently attracted a lot of attention due to its unique physical properties and potential applications for angle-resolved photonics and electronics, where optical anisotropies are important. Despite a few reports on the in-plane anisotropies of GaTe, a comprehensive understanding of them remained unsatisfactory to date. In this work, we investigated thickness-dependent in-plane anisotropies of the 13 Raman-active modes and one Raman-inactive mode of GaTe by using angle-resolved polarized Raman spectroscopy, under both parallel and perpendicular polarization configurations in the spectral range from 20 to 300 cm(−1). Raman modes of GaTe revealed distinctly different thickness-dependent anisotropies in parallel polarization configuration while nearly unchanged for the perpendicular configuration. Especially, three A(g) modes at 40.2 ([Formula: see text] ), 152.5 ([Formula: see text] ), and 283.8 ([Formula: see text] ) cm(−1) exhibited an evident variation in anisotropic behavior as decreasing thickness down to 9 nm. The observed anisotropies were thoroughly explained by adopting the calculated interference effect and the semiclassical complex Raman tensor analysis. |
---|