Cargando…
Multi-generation genomic prediction of maize yield using parametric and non-parametric sparse selection indices
Genomic prediction models are often calibrated using multi-generation data. Over time, as data accumulates, training data sets become increasingly heterogeneous. Differences in allele frequency and linkage disequilibrium patterns between the training and prediction genotypes may limit prediction acc...
Autores principales: | Lopez-Cruz, Marco, Beyene, Yoseph, Gowda, Manje, Crossa, Jose, Pérez-Rodríguez, Paulino, de los Campos, Gustavo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8551287/ https://www.ncbi.nlm.nih.gov/pubmed/34564692 http://dx.doi.org/10.1038/s41437-021-00474-1 |
Ejemplares similares
-
Application of Genomic Selection at the Early Stage of Breeding Pipeline in Tropical Maize
por: Beyene, Yoseph, et al.
Publicado: (2021) -
Genomic Prediction Enhanced Sparse Testing for Multi-environment Trials
por: Jarquin, Diego, et al.
Publicado: (2020) -
Scalable Sparse Testing Genomic Selection Strategy for Early Yield Testing Stage
por: Atanda, Sikiru Adeniyi, et al.
Publicado: (2021) -
Genetic analyses of tropical maize lines under artificial infestation of fall armyworm and foliar diseases under optimum conditions
por: Kamweru, Isaac, et al.
Publicado: (2023) -
Empirical Comparison of Tropical Maize Hybrids Selected Through Genomic and Phenotypic Selections
por: Beyene, Yoseph, et al.
Publicado: (2019)