Cargando…
Deep learning-based segmentation of lithium-ion battery microstructures enhanced by artificially generated electrodes
Accurate 3D representations of lithium-ion battery electrodes, in which the active particles, binder and pore phases are distinguished and labeled, can assist in understanding and ultimately improving battery performance. Here, we demonstrate a methodology for using deep-learning tools to achieve re...
Autores principales: | Müller, Simon, Sauter, Christina, Shunmugasundaram, Ramesh, Wenzler, Nils, De Andrade, Vincent, De Carlo, Francesco, Konukoglu, Ender, Wood, Vanessa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8551326/ https://www.ncbi.nlm.nih.gov/pubmed/34707110 http://dx.doi.org/10.1038/s41467-021-26480-9 |
Ejemplares similares
-
Comparison of three‐dimensional analysis and stereological techniques for quantifying lithium‐ion battery electrode microstructures
por: TAIWO, OLUWADAMILOLA O., et al.
Publicado: (2016) -
The application of graphene in lithium ion battery electrode materials
por: Zhu, Jiping, et al.
Publicado: (2014) -
Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries
por: Ludwig, Brandon, et al.
Publicado: (2016) -
Electrophoretic Deposition for Lithium‐Ion Battery Electrode Manufacture
por: Lalau, Cornel C., et al.
Publicado: (2019) -
Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes
por: Pietsch, Patrick, et al.
Publicado: (2016)