Cargando…
Deep Learning for Classification and Selection of Cine CMR Images to Achieve Fully Automated Quality-Controlled CMR Analysis From Scanner to Report
Introduction: Deep learning demonstrates great promise for automated analysis of CMR. However, existing limitations, such as insufficient quality control and selection of target acquisitions from the full CMR exam, are holding back the introduction of deep learning tools in the clinical environment....
Autores principales: | Vergani, Vittoria, Razavi, Reza, Puyol-Antón, Esther, Ruijsink, Bram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8551568/ https://www.ncbi.nlm.nih.gov/pubmed/34722674 http://dx.doi.org/10.3389/fcvm.2021.742640 |
Ejemplares similares
-
Fully Automated, Quality-Controlled Cardiac Analysis From CMR: Validation and Large-Scale Application to Characterize Cardiac Function
por: Ruijsink, Bram, et al.
Publicado: (2019) -
An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases
por: Mariscal-Harana, Jorge, et al.
Publicado: (2023) -
Fully-automatic synthesis of cine viability CMR images with minimal estimation error
por: Hassanein, Azza S, et al.
Publicado: (2015) -
The Role of AI in Characterizing the DCM Phenotype
por: Asher, Clint, et al.
Publicado: (2021) -
Fairness in Cardiac Magnetic Resonance Imaging: Assessing Sex and Racial Bias in Deep Learning-Based Segmentation
por: Puyol-Antón, Esther, et al.
Publicado: (2022)