Cargando…
Computational Fluid Dynamics Optimization of an Extraoral Vacuum Aerosol Cup for Airborne Disease Control in Dental Offices
Droplet and aerosol transmission of COVID-19 are the most important concerns in dental clinics, due to the generation of large amounts of infected aerosol and droplets mixed with patient’s saliva during the procedures. The current approach to prevent airborne disease transmission is an extraoral aer...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8551950/ http://dx.doi.org/10.1007/s41810-021-00121-6 |
Sumario: | Droplet and aerosol transmission of COVID-19 are the most important concerns in dental clinics, due to the generation of large amounts of infected aerosol and droplets mixed with patient’s saliva during the procedures. The current approach to prevent airborne disease transmission is an extraoral aerosol suction unit: a stand-alone vacuum module with a segmented arm and cup. Despite the need for disease control in dental offices, these units are rarely seen due to the loud noise produced by vacuum, bulky size, and high cost. This paper describes the aerodynamic design optimization of an affordable, 3D printable, Extraoral Vacuum Aerosol Cup (EVAC) that can be directly connected to existing standard 7/16″ central vacuum high-volume evacuator (HVE) valves used for intraoral saliva absorption in a dental office. These HVEs are typically unsuitable for extraoral suction due to their low vacuum force. However, they can be used for extraoral suction, if the cup attachment is aerodynamically optimized for maximum suction efficiency. Fifteen different designs of EVAC are proposed and their suction processes were simulated with computational fluid dynamics. Droplets of various sizes are released to mimic the droplets produced during dental operation. The suction performances of EVACs with different sizes and shapes were compared to find out the designs with optimal performance. Prototypes of the optimized EVAC are 3D printed and tested at a dental office. Development and manufacturing of such a device will largely reduce the COVID-19 infection risk, thus improving the safety protection for both patients and doctors at dental offices. GRAPHIC ABSTRACT: [Image: see text] |
---|