Cargando…
Self–Training With Quantile Errors for Multivariate Missing Data Imputation for Regression Problems in Electronic Medical Records: Algorithm Development Study
BACKGROUND: When using machine learning in the real world, the missing value problem is the first problem encountered. Methods to impute this missing value include statistical methods such as mean, expectation-maximization, and multiple imputations by chained equations (MICE) as well as machine lear...
Autores principales: | Gwon, Hansle, Ahn, Imjin, Kim, Yunha, Kang, Hee Jun, Seo, Hyeram, Cho, Ha Na, Choi, Heejung, Jun, Tae Joon, Kim, Young-Hak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552097/ https://www.ncbi.nlm.nih.gov/pubmed/34643539 http://dx.doi.org/10.2196/30824 |
Ejemplares similares
-
Heterogeneous graph construction and HinSAGE learning from electronic medical records
por: Cho, Ha Na, et al.
Publicado: (2022) -
Machine Learning–Based Hospital Discharge Prediction for Patients With Cardiovascular Diseases: Development and Usability Study
por: Ahn, Imjin, et al.
Publicado: (2021) -
CardioNet: a manually curated database for artificial intelligence-based research on cardiovascular diseases
por: Ahn, Imjin, et al.
Publicado: (2021) -
A multiple imputation method based on weighted quantile regression models for longitudinal censored biomarker data with missing values at early visits
por: Lee, MinJae, et al.
Publicado: (2018) -
Quantile regression
por: Koenker, Roger
Publicado: (2005)