Cargando…

Impact of PM2.5 concentration, weather and population on COVID-19 morbidity and mortality in Baghdad and Kuwait cities

The coronavirus (COVID-19) pandemic is a global health crisis and biggest challenge facing the world. Station measurements of fine particulate matter (PM2.5) concentration in Baghdad and Kuwait during the period January–July 2020 are analyzed as well as assessment of correlation between PM2.5, weath...

Descripción completa

Detalles Bibliográficos
Autores principales: Halos, Saadiyah H., Al-Dousari, Ali, Anwer, Ghofran R., Anwer, Amany R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552206/
https://www.ncbi.nlm.nih.gov/pubmed/34725645
http://dx.doi.org/10.1007/s40808-021-01300-7
Descripción
Sumario:The coronavirus (COVID-19) pandemic is a global health crisis and biggest challenge facing the world. Station measurements of fine particulate matter (PM2.5) concentration in Baghdad and Kuwait during the period January–July 2020 are analyzed as well as assessment of correlation between PM2.5, weather conditions (air temperature, relative humidity, wind speed), population density and COVID-19 morbidity and mortality. A significant improvement (decrease) has observed during total and partial curfew in PM2.5 at Baghdad by 35%, 12.4%, respectively, from PM2.5 mean during the study period that is less than the WHO recommended PM2.5 level especially in total curfew. This decrease in PM2.5 pollution and people’s mobility in Baghdad at total and partial curfew contributed to decrease injuries and mortality. PM2.5 during total and partial curfew in Kuwait country witnessed increasing by 38.4% and decreasing by 22.3% from the PM2.5 mean, respectively, but still higher than WHO standard level. This increase in PM2.5 at total curfew was related to burning accidents in the oil wells which caused increasing in PM2.5 pollutant and then an increase in number of injuries and mortality during that time. In general during all study period our research found that PM2.5 and wind speed exhibit weak relation with COVID-19 morbidity and mortality but strong relation with increasing temperature and decreasing humidity. The high population density had a good association with increasing daily new cases, mortality due to COVID-19 pandemic. Thus, these factors may be taken into consideration in policy development for the control and prevention of new chains of the Coronavirus pandemic.